nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)
nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)
nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)
nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)
nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)
nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)
nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)
nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)
nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated. 
in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning. 
but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  
volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life. 
(see also: previous volcanology posts)

nubbsgalore:

photos of sakurajima, the most active volcano in japan, by (click pic) takehito miyatake (previously featured) and martin rietze. volcanic storms can rival the intensity of massive supercell thunderstorms, but the source of the charge responsible for this phenomenon remains hotly debated.

in the kind of storm clouds that generate conventional lightning, ice particles and soft hail collide, building up positive and negative charges, respectively. they separate into layers, and the charge builds up until the electric field is high enough to trigger lightning.

but the specific mechanism by which particles of differing charges are separated in the ash cloud is still unknown. lightning has been observed between the eruption plume and the volcano right at the start of an eruption, suggesting that there are processes that occur inside the volcano to lead to charge separation.  

volcanic lightning could yield clues about the earth’s geological past, and could answer questions about the beginning of life on our planet. volcanic lightning could have been the essential spark that converted water, hydrogen, ammonia, and methane molecules present on a primeval earth into amino acids, the building blocks of life.

(see also: previous volcanology posts)

(via yungsaulboi)

desaparecidos:

A sixties kid flashes the peace sign after being beaten by riot police.

I never want to forget this image. 

(via merlimoo)

ianference:

It is truly a strange thing when a steam pipe bursts under an abandoned building in the dead of winter, but that’s exactly what happened under the Clinic Building at Greystone Park State Hospital in 2007, a month before the building was unceremoniously knocked down.  The steam congregated near the ceiling of the abandoned asylum infirmary, condensing on the pipes and dripping down in regular patterns - and creating these ice stalagmites.  An hour after taking this photograph, demolition workers came into the building and chased us through the tunnels; we had to hide in an attic in 0 degree weather for hours while cops searched for us.  The next time I drove out there, there was no trace that a building had ever stood in this spot.

(via cheerthecheer)

brothertedd:

Batman by Francisco Michelena brothertedd:

Batman by Francisco Michelena brothertedd:

Batman by Francisco Michelena brothertedd:

Batman by Francisco Michelena brothertedd:

Batman by Francisco Michelena
brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies brothertedd:

Before and After Video Effects – Movies

brothertedd:

Before and After Video Effects – Movies

(via brothertedd)

deadthing:

Omg

reddlr-earthporn:

Little Colorado River Gorge from 33,000 feet [OC] [2592x1936]

likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13) likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13)

likeafieldmouse:

Brett Amory - More from the series Waiting (2012-13)

cassoday:

will cassoday:

will